BGP Flowspec April 2008

Agenda

- The problem
- What is Flowspec?
- Components
- Validation
- What can we do with it?
- Junos Configuration

The problem

- Service Providers are being driven to detect and mitigate denial of service attacks destined towards key customers
 - Stop bad traffic from reaching customer
- Service Providers also want to
 - Stop bad traffic consuming resources on expensive transit links
 - Be able to position as a value add to customer

Layered solution

- CPE protection
 - Customer has UTM/DI/IDP
 - Granular inspection of every packet
- Provider upstream edge detection/blocking
 - Analysis of flow information
 - Dynamic filters applied to rate limit, block or redirect specific attack traffic
 - Eliminate human error or delay associated with traditional access list mitigation
- Centralised cleaning solution
 - Value add for customer that doesn't have deep inspection capability
 - Forensic analysis / packet capture

BGP Flowspec

- Use BGP to distribute flow specification filter and dynamically filter on routers
 - Introduced in Junos 7.2
 - New BGP NLRI address family
 - Use extended communities to specify action (accept, discard, rate-limit, sample, redirect)
 - Match on a combination of source/dest prefix, source/ dest port, ICMP type/code, pack size, DSCP, TCP flag, fragment encoding etc.

What is BGP Flow-Spec

- RFC 5575 Dissemination of Flow Specification Rules
- Defines a method for the originator of a BGP NLRI to define and advertise a flow filter to its peers via BGP.
- Multi vendor support
 - Co-authored with Cisco, Arbor, NTT/Verio
- Authors:
 - Jared Mauch
 - Danny McPherson
 - Robert Raszuk
 - Barry Greene
 - Pedro Marques
 - Nischal Sheth

What is BGP Flow-Spec

- Defines a way to carry "flow" in BGP
 - New Address family for BGP
 - NLRI type (afi=1, safi=133)
- Defines operations to perform on flows
 - Sends an "action" in a BGP Update
- Defines a Model for Validation

Component Types

- T1 Destination Address
- T2 Source Address
- T3 IP Protocol
- T4 Port (source or dest)
- T5 Destination port
- T6 Source Port
- T7 ICMP type
- T8 ICMP code
- T9 TCP flags
- T10 Packet length
- T11 DSCP
- T12 Fragment Encoding

Actions

- Carried as extended BGP communities
- Type 0x8006 Traffic-Rate
- Type 0x8007 Traffic-Action
 - Bit 0 Action set to "action or not" (filter or not)
 - Bit 1 Sample log the packets
- Type 0x8008 Redirect
 - Send traffic to another VRF for collection

Flow Validation

- Need to validate by default to prevent spoofing
- Rules
 - a) The "originator" of a flow route matches the "originator" of the best match unicast route for the destination address that is embedded in the route.
 - b) There are no more-specific unicast routes, when compared to destination address of the flow route, for which the active route has been received from a different next-hop autonomous-system.

Disabling Validation

Validate against a policy

What can we do with it

- Allows Customers to set their own firewalls on SP core.
 - Validation rules will avoid spoofing of flow NLRI
- Provides a tool for the NOC to quickly react to DDOS attacks.

Distributed DOS attack In the "old" days

The General Concept – micro view

 CPE can now react to a DOS attack "Help" I'm being attacked √ter ZERO SP Provisioning IP flow 10/24

In model for monitoring, flow is small part of picture

Distributed DOS attack CPE Controlled

Comparisons with current filtering methods

- Many SP's already use prefix based filters
 - Match on community
 - Set next-hop discard
 - ONLY works for destination prefix
- Flow adds granularity to this
 - Match on components
 - SA / DA / Proto / length...
 - Don't have to discard
 - Rate limit
 - Sample
 - Forwarding-class

Configuration Options Define FLOW

```
routing-options {
  flow {
    route <name> {
       match {
            destination;
            source;
            protocol;
            port;
            destination-port;
            source-port;
            icmp-code;
            icmp-type;
            tcp-flags;
            packet-length;
            dscp;
            fragment [
               dont-fragment
               not-a-fragment
               is-fragment
               first-fragment
               last-fragment
```

```
then {
                   accept;
                            discard:
                            next-term;
                            rate-limit:
                            sample;
                            routing-instance;
[edit protocols bgp]
group <name> {
  family inet flow;
  neighbor <a.b.c.d> {
              family inet flow;
```

Configuration Example Routing Options

Define Flow routes

```
routing-options {
    flow {
        route filter {
            match destination 192.168.21.0/24;
            then {
                community test;
                rate-limit 32k;
            }
        }
    }
}
```

Configuration example BGP

Add family flow to BGP peers

```
Protocols {
    bgp {
        group int {
            type internal;
            local-address 20.2.2.2;
            family inet {
                 unicast;
                 flow; <<<
                 }
            neighbor 20.3.3.3;
}</pre>
```

Configuration example

Define Non-Validation

```
show protocols bgp group int {
   type internal;
   local-address 20.3.3.3;
   family inet {
      unicast;
      flow {
         no-validate test;
      }
   }
   neighbor 20.2.2.2;
}
```

Diagnostics

- show route receive-protocol bgp
 - Shows received NLRI
- show route advertising-protocol bgp
 - Shows advertised NLRI
- show route flow
 - show active flow routes
- show route table inetflow.0
 - Shows actual defined flow routes (from routing options)
- show firewall
 - Shows installed flow filters and counters

Show Firewall

lab@Darstardly-re0# run show firewall

Counters:

Name Bytes Packets

192.168.21/24,* 28672 112

Policers:

Name Packets

192.168.21/24,*

[edit]

lab@Darstardly-re0#

Who's using it

- Internet 2
- TimeWarner
- others looking into it
 - Dozens!

Big Motivation is VoIP

Common questions

- Spoofing
 - Validation will prevent this
- Why BGP
 - Its there
- What's stopped auto configuration efforts in the past?
 - AS boundaries
 - NO tools that work
 - Configure >100 routers in seconds "Danny McPherson"

Arbor BGP flowspec integration

26

Things to think about...

- Propagation of filters to SP peers?
- Use in lawful intercept?

References

- http://www.nanog.org/mtg-0610/lozano.html
- http://tools.ietf.org/id/draft-marques-idr-flowspec-04.txt
- http://www.ietf.org/proceedings/07jul/slides/ idr-0.pdf